INDIGENOUS DEVELOPMENT OF NATURAL GAS (CNG) COMPRESSOR ## **INTRODUCTION** M/s Hypercomp (Pvt) Ltd successfully developed Natural Gas Compressor in Pakistan. The compressor was developed through reverse engineering for which indigenously available resources, including Material Evaluation, Testing, Inspection, Manufacturing and Expert Services were utilized. It is extremely encouraging that the concentrated effort of the resources has lead to the successful achievement of an uphill task. M/s Hypercomp (Pvt) Ltd acknowledge and appreciate the efforts of contribution of all human resources and support by the concerned industries to provide material. ## **DEVELOPMENT OF CNG COMPRESSOR** After many unsuccessful attempts for having a joint venture or technical collaboration with the world's renowned manufacturers, **Reverse Engineering** had been the only choice for which a small but highly motivated and dedicated team of qualified engineers and consultants was formed based on available expertise. A country wide survey was then conducted to source, assess and evaluate the required resources in the fields of materials testing, pattern making, drafting, casting, welding etc. It was quite encouraging to know that although the available resources and technical know- how are hidden and scattered but are more than enough for the project. # **SELECTED DESIGN & TECHNICAL SPECIFICATIONS** After a detailed study of the CNG market nationally, internationally and the requirements of end users, the following design and technical specifications were selected. | Make and Model | Hypercomp, 3W815 | | |---------------------------------|---|--| | Compressor Configuration | W- 120° | | | Compressor Design | Cross Head design, Atmospheric Crankcase | | | No. of Cylinders | 03 No. | | | No. of Stages | 03 No. | | | Gas Inlet Pressure (min-max) | 08-15 Psig | | | Gas Discharge Pressure | 3625 Psig | | | Gas Discharge Capacity@ 15 Psig | 270 m ³ /hr ± 5% (at 30°C) | | | Gas Discharge Capacity@ 08 Psig | 225 m ³ /hr ± 5% (at 30°C) | | | Compressor Speed | 795-900 RPM | | | Piston Stroke | 127 mm | | | Piston Mean Speed | 3.36 m/s @ 795 RPM | | | Fistori Meari Speed | 3.81 m/s @ 900 RPM | | | Cylinder Jacket Cooling | Water | | | Inter Stage Gas Cooling | Water | | | Cooling System | Cooling Tower (70RT min.) Closed Circuit Optional | | | Electric Motor Size | 75KW (100hp) | | | Oil Capacity (Crankcase) | 12 Liters | | | Oil Capacity (Lubricator) | 1.5 Liters | | | Ambient Temperature Range | Up to 50°C | | | Overall Dimensions (LXWXH) | 2135 X 1190 X 1730 (mm) | | | Weight (without motor) | Approx. 1750Kg | | | Overall Weight | Approx.2400Kg | | # **FEATURES** Based on Technical Specifications the following features in the Compressor were aimed. | 1. | Dedicated natural gas compressor design | |-----|---| | 2. | W type cylinder arrangement utilizing gas load balancing | | 3. | Specifically designed Heat Exchangers for high ambient conditions | | 4. | High quality Relief valves for sure safety | | 5. | Full flow filtered pressurized lubrication | | 6. | Very low vibration does not require any specific foundation | | 7. | Lowest maintenance cost due to low RPMS and piston speed | | 8. | Accessible for easy and quick maintenance | | 9. | No special tooling required for any maintenance operation | | 10. | 100% parts availability round the clock | # **DEVELOPMENT PROCESS THROUGH REVERSE ENGINEERING** For reverse engineering complete evaluation of all the parts was done by **PSQCA Laboratories**. Evaluation reports include Chemical, Physical and Metallographic analysis. Comprehensive & detailed machining and pattern drawings for each & every part were developed and patterns on German Standard were produced by expert pattern makers. # **CODES & STANDARDS FOLLOWED** - 1. For Overall Design - I. Reciprocating compressors for petroleum, chemical and gas industry services <u>API (American Petroleum Institute) Standard 618</u>, Fourth Edition, June 1995. - II. Pakistan CNG Rules 1992 - 2. For Heat Exchanger's Design TEMA Class R, ASME Section VIII Div. I 3. For Welding & Fabrication of Heat Exchangers, Piping and Pressure Vessels ASME Section VIII, IX and B31.3 ## **MATERIALS USED** The materials used for different parts were proven which were very carefully selected through our consultants in accordance with API-618. | ITEM DESCRIPTION | MATERIAL | FORM | |---|-----------------------------|--------------| | Crankcase | Gray Cast Iron BS Grade 260 | Cast | | Crankshaft | SG Iron BS 700/3 | Cast | | Connecting Rods | SG Iron BS 700/3 | Cast | | Piston Pins | AISI-8620 | Forged | | Cross Head Pistons & Cylinders | Gray Cast Iron BS Grade 260 | Cast | | Compression Cylinder 1 st Stage | Gray Cast Iron BS Grade 260 | Cast | | Compression Cylinders 2 nd & 3 rd Stage | AISI-1045 | Forged | | Cylinder Liners | Gray Cast Iron BS Grade 260 | Cast | | Cylinder Head 1 st Stage | Gray Cast Iron BS Grade 260 | Cast | | Cylinder Heads 2 nd & 3 rd Stage | AISI-1045 | Forged | | Compression Piston 1 st Stage | Aluminum-8620 | Extruded Bar | | Compression Piston 2 nd Stage | Aluminum-7075 | Extruded Bar | | Compression Piston 3 rd Stage | AISI-4140 | Bar Stock | | Piston Rods | AISI-4140 | Bar Stock | |--------------------------------------|--------------------------|--------------| | Valve Seats & Guards | Carbon Steel | Plate | | Valve Plates | Stainless Steel AISI-304 | Plate | | Valve Springs | Stainless Steel AISI-304 | Plate | | Packing Cases | AISI-1045 | Forged | | Piston Rings, Rider Rings, Rod Seals | PTFE, PEEK | Bar Stock | | Shell for Heat Exchangers | ASTM 106, Grade: B | Extruded Bar | | Tubes for Heat Exchangers | AISI-304L | Extruded Bar | | Tube sheets for Heat Exchangers | AISI-304L | Extruded Bar | ## **VENDORS** The International manufacturing method was adopted i.e. subcontracting and vendorization. Here are some vendors which are very renowned and professional in their concerned fields. **Excel Engineering- Lahore:** supported in the production castings of crankcases, cross head cylinders and cylinder heads. **Qadri Brothers** – Lahore: supported in the development of crankshafts in SG Iron Grades under supervision of **Mr. Munir Ahamd**: It has higher strengths and is more economical than the original one which was made of forged 1045.QBL also casted flywheels which weighs **330kg** each. Crankshafts and flywheels were balanced dynamically at 795 RPM at **KSB Pumps - Hassanabdal**. Since each & every rotating part of compressor is dynamically balanced not statically, so machine's vibrations are very low. <u>PSQCA -LHR (Pakistan Standard & Quality Control Authority):</u> supported throughout in material testing & development of crucial castings like connecting Rods again under supervision of **Mr. Munir Ahmad**. This part was developed in **SG Iron** instead of forged Steel 1045 and its results are quite satisfactory. <u>Shahsons Engineering - Multan:</u> supported in the manufacturing of cylinder liners according to our given specifications. **GM Engineering – Lahore:** casted miscellaneous small but critical parts. Different special processes to enhance the performance and service life of different parts. <u>Hercules Engineering - Lahore</u> developed *special PTFE coatings* for cross head pistons through which friction was reduced and saved electricity load. They are also engaged in hard anodizing of Aluminum pistons. **PMO (Pakistan Management Organization)**'s state of the art machining centers provided machining services for critical parts. <u>Precision Engineered parts - USA:</u> manufactured Piston rings, rods & rod seals on specific sizes and requirements. <u>Petrocon Engineering - Islamabad:</u> provided services in the field of fabrication and welding of heat exchangers, pressure vessels piping and structures in accordance with international applicable welding codes like <u>ASME</u> <u>section VIII & IX</u>. Radiography carried out by <u>Jiaco Pakistan</u> and inspection of fabrication/piping done by <u>Dynamic Inspection Services</u>. <u>Hamid Traders - Islamabad:</u> got developed special high temperature resistant paints from <u>ICI</u> for our special requirement. Our vendors/sub contractors have always been very supportive and we expect the same response in the future also. # **IN-HOUSE ACTIVITIES** These are some in-house activities associated in manufacturing of CNG Compressors. All the parts received have to go through strict quality checks. Each & every part has its own acceptance criteria. All quality & inspection procedures were developed by Hypercomp (Pvt) Ltd an <u>ISO 9001:2008</u> certified company. To ensure the precision and accuracy of all parts, calibrated instruments were used from reputable resources. For this the services from <u>PCSIR</u>, <u>Inspectest</u>, <u>and KSB</u> etc were hired. All the pressure containing parts are <u>hydrostatically</u> tested at **1.5 times** of their design pressure for 24 hrs as per international codes. This includes compression cylinders, heads, heat exchangers and all piping spools. Parts are then assembled according to their predefined fitments and tolerances. The assembly procedures & fixtures for each & every part were developed at M/s, Hypercomp. It also reduced the assembly time. After the completion of bare shaft compressor, piping & heat exchangers were installed on the main skid. The <u>Performance & Endurance</u> testing activity was the most crucial part and for that an In-house test bench and duplicated environment of CNG Stations have been designed. Compressor had to undergo through harsh endurance testing to prove the set parameters. Once compressor passed its performance test it is then shifted to paint shop where a proper painting procedure is applied in accordance with international standards. The paints used are comprised of **Epoxy Primer, PU Primer and 2K Paints** which are corrosion & high temperature resistant. A paint thickness report is generated for all painted parts before final assembling with all external gadgets. Third party inspection & performance testing, which is a compulsory requirement from **OGRA (Oil & Gas Regulatory Authority,** has been conducted by M/s **Bureau Veritas,** an international inspection company. The <u>Final Manufacturing Data report</u> (MDR) was submitted to **OGRA** for its evaluation & approval in 2008. OGRA then formed a high level technical committee comprised of <u>OGRA itself, HDIP, BV and IMTech</u>. As this was the first high pressure gas compressor ever made in Pakistan so every member of TEC was extra conscious and reluctant. They later physically visited the facilities and witnessed the performance of compressor. They asked numerous questions which were answered with documented evidences. This gave them enough confidence to finally approve the CNG compressor and issued the letter for production in **Feb 2010**. 3rd Party Inspection **OGRA's TEC Inspection** **OGRA's Approval Letter** ISO9001:2008 Cert. #### **FUTURE TARGETS** With present available resources, expertise and professional casting & machining centers, M/s Hypercomp is in a position to manufacture any range of compressors for different pressure & flow rates. | 1. | CNG compressors range from 200m³/hr to 600m³/hr for local & international market | |----|--| | 2. | 40 bar compressors for PET bottling industry | | 3. | Oxygen, Nitrogen & CO2 compressor for industrial use | | 4. | High pressure Air compressors for Defense forces | ## **ACKNOWLEDGEMENTS** Dedicated efforts, Vision and hard work of <u>Mr. Hamid Mahmood –CEO, M/s, Hypercomp</u>, who with limited resources but with tremendous courage, belief and dedication made the indigenous manufacturing of Natural Gas Compressor possible in the country. #### THE PFA (PAKISTAN FOUNDRY ASSOCIATION) ROLE Thanks to <u>Pakistan Foundry Association</u>, who organized <u>International Foundry Congress & Exhibition (IFCE - 2006)</u> at Lahore. It was a great opportunity for the team of Engineers where they found almost everything under one roof required to materialize for the project which is a ground reality now. ## **CONSULTANTS** It is worth mentioning few names of consultants who encouraged technical staff in the development of Natural Gas Compressor. There is no doubt that without their support & extra ordinary help, the achievements could not have been possible. Mr. Munir Ahmad: (Ex-DDG of PSQCA) who guided in the selection, sourcing & development of materials & parts. Mr. Imtiaz A. Rastgar: (CEO Rastgar Engineering – Islamabad) provided first prototype casting of crankcase. It was casted by their German consultant Mr. Becker. <u>Mr. Rick Tyma:</u> (Technical Manager Precision Engineered Parts, USA) for the selection, development and supply of the most crucial composite material parts like Piston Rings, Bearings and Rod seals etc. Mr. Reza Ahmad Malik: (ASME Level 3 inspector, CEO of Dynamic Inspection Services Co.) for his valued contribution in laying welding procedures, overall inspection and technical guidance. <u>Abdul Majid:</u> (Design Engineer, Darul Riaz-Saudi Arabia) who designed heat exchangers for the specific requirement. The team involved in the project of Natural Gas Compressor is highly obliged and thankful to all those who extended their support in the development of this special Project.